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Superconductors with Plane Boundaries* 
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The Gor'kov equations are solved approximately for various geometries to obtain information about the 
pair wave function A* (x) in the vicinity of plane boundaries. The approximation method consists of assum
ing a model Am*(x) taken constant within the superconductor, and assuming it to be close to the correct 
A*(x). The equations are then solved and a new A*(x) is calculated. Am* is then chosen in a self-consistent 
manner. The problems considered are the finite and semi-infinite superconducting slabs, and semi-infinite 
superconducting and normal metals in contact. The effects of the boundary conditions are discussed. 
The calculations are performed both at zero temperature and near the critical temperature. 

I. INTRODUCTION 

THE properties of an infinite homogeneous super
conductor have been reasonably well described 

by means of the theory of Bardeen, Cooper, and 
Schrieffer,1 and variations of it.2 However, because of 
the nonlinearity of the equations involved, it is rather 
difficult to apply the theory to less trivial geometries. 
It is therefore desirable to develop various approxima
tions which allow the equations of the theory to be put 
in more tractable form. One successful approach has 
been that of Ginzburg and Landau3 which Gor'kov4 has 
shown can be derived by taking advantage of the fact 
that the energy gap approaches zero at the critical 
temperature, and the assumption that the distance 
over which the magnetic field varies (the penetration 
depth) is much longer than the coherence distance near 
the critical temperature. We should like to consider 
another approach which is not restricted to the critical 
temperature region and hence does not depend on the 
smallness of the energy gap. We shall restrict ourselves 
to the simplest possible problem by assuming that the 
interaction potential between two electrons is given by 

F ( r - 0 = - g / ( * ) 5 ( r - r ' ) , g>0 (1) 

where f(x) is one or zero depending on the type of 
metal we have at point x: 

f(x) = 0 Normal metal 
= 1 Superconducting metal. (2) 

(Our use of x rather than r is because we shall only 
consider geometries which vary in one direction.) We 
will, as usual, introduce a cutoff at the Debye fre
quency COD, whenever necessary. With this assumption, 
the system may be described by the Gor'kov equations 
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for the imaginary frequency Green's functions4: 

[zW+vy2m+M]Gcon(r,r') 
+ / W A W F % t ( r , r ' ) = 5 ( r - r ' ) , 

[-&)»+V»/2f»+M]F«ll
t(r,r/) 

- / (*)A^)G„„(r ,r ' ) = 0, 

(3) 

where the frequency o)n ranges over discrete values, 

con= (2n+l)irkT (4) 
and 

A*(x) = gkT X F. . t(r ,r) . (5) 

One usually refers to A (x) as the energy gap because in 
an infinite homogeneous superconductor it is inde
pendent of position and corresponds to half the mini
mum energy necessary to break a correlated pair. In 
our case, where A(x) will vary with position, this is 
probably not good terminology, as the energy of a given 
pair will presumably be the same no matter where you 
find it, so we shall refer back to the definition, (5), and 
call A(x) the pair wave function, the probability of 
finding a correlated pair at point x (multiplied by g out 
of deference to convention). 

Now, we don't want to assume that A(x) is small. 
However, if the geometry is such that we can make a 
reasonable guess at a model Am(x), then we might be 
able to assume that Am(x)—A(x) is small. If this is the 
case, and if we can solve the, now linear, equations with 
A(x) replaced by Am(x), then, to the extent that Am(x) 
— A(x) actually is small, we shall have a useful approxi
mation. For the geometries we shall consider, we will 
find it convenient to choose 

Am(x) = A (6) 

independent of position, whenever we are in a super
conductor. Since A(x) always occurs multiplied by f(x), 
we need say nothing about Am(x) in a normal metal. 
The choice (6) guarantees that we can always solve the 
equations. 

In Sec. II we shall treat a finite superconducting 
slab. We shall see that our approximation gives excel
lent agreement with the numerical calculations of Blatt 
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and Thompson.5 We will discuss the effects of the 
boundary conditions on our results, and will also con
sider the limit as the slab becomes infinitely thick, that 
is, the semi-infinite superconductor. In Sec. I l l we will 
consider the semi-infinite superconductor in contact 
with a semi-infinite normal metal. We will examine the 
behavior of the pair wave function both at zero tem
perature and near the critical temperature. We will 
also examine the effects of varying the effective mass 
and the Fermi momentum independently in one metal, 
as well as the boundary conditions at the interface 
between the metals. 

II. FINITE AND SEMI-INFINITE SLABS 

Since we will be considering geometries which vary 
in only one dimension, the x dimension, we can im
mediately make a Fourier transformation with respect 
to the y and z variables. Thus, we let 

dkx f tfkx 

J (2TT)2 

F»A*: •*'>=/ 
dkx 

( 2 ^ 

(7) 

exppkj.- (rj.— rx')]^o,„t(^,^'^i), 

where the subscript J_ indicates a two-dimensional 
vector in the yz plane. We introduce the abbreviations 

{i=*i*/2»-/», (8) 

a=[2m{— £i+iw„)]1/2, and 

a*=-[2m(-Zi.-io>n)y\ (9) 

(We shall use the convention that the phase of a com
plex number lies between 0 and lit, hence any square 
root lies in the upper half plane. For this reason we 
must have the minus sign in a*.) Then (3) becomes, 
with (6), 

(l/2m) (ai+di/dx,i)GUa(x,x',kl) 
+f(x)AFj(x,x',h) = S(x-x'), 

(l/2») (a*2+d 2/dx2)FuJ (x,x',^) 
-f(x)A*Gan(x,x'M) = 0. 

(10) 

For the case of a slab of superconductor between x=0 
and x=d, we must take /(#) = 1 in this region. 

Solution for Ft and G 

We shall take as boundary conditions the vanishing 
of the wave functions, and hence both F1" and G at the 
boundaries #=0 and x=d. Later we will see how some 
modification of these will affect the results. The solu
tion of (10) is then straightforward; one simply solves 
them in the regions x>x' and x<x' subject to the van-

5 J. M. Blatt and C. J. Thompson, Phys. Rev. Letters 10, 332 
(1963). 

FIG. 1. Behavior of * 
A*(x) in slab of thick- A 

ness d> showing region 3 
df over which A*(x) is *<j 
to be averaged to calcu
late A*. 

ishing of Ff and G at the boundaries, and then demands 
continuity or the appropriate discontinuity at x=xf. 
If we introduce the notation 

€»=[«»*+1A I']1'*, 

the solutions are 

A*(2w)2 \$mb(d~ x>) sin&x< 

(ID 

FaJ(x,x',h) = 
02-&*2)l bsinbd 

sin&* (d— x>) sin6*a;< 1 

b* sinb*d 1 
(12) 

GWn(^,x/
J^i) = 

2m f (a*2—b2) sinb(d—x>) sin&#< 

(b2-b*2)l bsinbd 

(a*2—b*2) sin&*(J— x>) sin&*#<] 

Z>* sin£*d J 

where x> is the larger of x and #', while x< is the smaller. 

Self-Consistent Evaluation of A* 

We must now evaluate A* in some self-consistent 
manner. Our approach will be to calculate A*(#) by 
means of (5). If A*(x) were a constant, then we would 
simply equate that constant to A* and obtain an 
equation for A*. Since, in fact, A*(x) will not be con
stant, we will equate A* to the average value of A*(x). 
Now, we expect that A*(x) will go to zero at the bound
aries, because of the boundary conditions, but will rise 
as we get away from the boundaries and remain rela
tively constant in the interior of the superconductor 
(see Fig. 1). We should like to equate A* to the average 
interior value of A*(#), hence we should only average 
over the region df, rather than over d. Thus, our self-
consistence equation will be 

1 r< 
A * = - / 

Wo 
A* (#)<&. (13) 

As A*(x) is essentially zero outside of df we have ex
tended the integration to the surfaces of the super
conductor without introducing any appreciable error. 
We will return to the specific evaluation of d' after we 
see what the surface behavior of A*(#) actually is. 
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I t is convenient to perform the averaging immedi
ately on FaJ(x,x',ki). Thus we get 

1 rd 

d'J, 
F»nKkj)=—l dxF„J(x,x,kj) 

d\ 

D A V I D S . F A L K 

which is independent of £1, and that 

db/d^-m/b, db*/d£i=-m/b*, 

one gets 

A*(2m)2 (Id I d 
= cotdb 1— cotdb* 
2d'(b2-b*2)lb2 b b*2 b* 

. (14) 

brmi 1 r0*sind0"ilu~°° 
FWBt= In 

4wd' en LJsinrfi*J|^>B_J 

(17) 

(18) 

Now, according to (5), we need FWn
t(r,r) in order to 

evaluate A*. Thus we must integrate over kx. Since a 
and b only depend on kj. through & we may change the 
variable of integration to £i. Thus let 

r dkx r™ kxdfa 

J (2TT)2 JO (2TT)2 

Since b—>i<*> as £x —» <*>, there is no contribution from 
the upper limit and we have 

A*mi 1 r&* sindb' Arnii 1 r 
V = In 

6 sind&* J 
(19) 

where it is now understood that we are to replace &, by 
—ji. Finally, according to (5) and (13) we have 

Then noting that 

m r° 

2ir]_ 
d^,F0J(k,). (15) 

A*=gkTZ»F„J. (20) 

P-b*2=4mien, (16) 

We shall confine ourselves now to zero temperature. 
In this case, the summation in (20) becomes replaced 
by an integral6 

do)n {2nttfi-i(a>n
2+ | A | ' J 1 *]} 1 * s in{d[2f»[>+*W+1A | 'J1*] J1*} 

r00 dun 
A * = g / — F „ J 

J —oo LIT 

gtniA* r™ 

2 ( 2 T T ) W _ 0 O («n
J 

Or, letting wn=^w, 

gm^oA* /•*» Jco r [ l + (o>2- I A 1 W / * ] 1 * sin{Cl - ("2~ IA | 2 ) 1 / 2 /M] 1 / 2 } 
A*= / I n -

; ' ( (<*,?+1A12)l« L{2W[M+«(CO„ 2 + IA|»)W]}>* sin{<Z[2w[>-*(w„2+1A13)1/2; 

»^oA* r1" dw n i + K — |A| z ; i 'VMj ' z s in{ /Li - ( , " a - | ^ rJ 1 'VMj 1 ' z }" | 

2 (2TT) W _ i o o ( u 2 - | A |2)1 ' '2 T C I - ( o 2 - | A12)1/2/M]1/2 s i n{Cl+ ( " 2 - | A | 2 ) I / 2 /M] 1 / 2 } J 

]nJ- (21) 

(22) 

where we have introduced the dimensionless measures 
of the slab thickness 

l=p0d, l'=pod', (23) 

where po is the "Fermi momentum" 

pi/lm^n. (24) 

I t should be pointed out, as Thompson and Blatt7 

have emphasized, that for fixed density, po is a function 
of the thickness d. In the Appendix we show that it is 
the same function as in the case of the normal metal, 
in agreement with Thompson and Blatt. The integral 
in (22), as written, diverges, so we must make the usual 

FIG. 2. Complex w plane 
showing distorted contour 
for evaluation of (22). 

IAI' 

6 A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinskii, 
Zh. Eksperim. i Teor. Fiz. 36, 900 (1959) [translation: Soviet 
Phys.—JETP 9, 636 (1959)]. 

7 C. J. Thompson and J. M. Blatt, Phys. Letters 5, 6 (1963). 

cutoff at the Debye frequency, WD. I t is convenient 
here to introduce the cutoff by distorting the contour 
of (22). To do so, we assume that there actually is 
some cutoff function which goes to zero as |w|—><*> in 
the right-hand half co plane. Then we may distort the 
contour as shown in Fig. 2, to a line integral running 
below the real axis, around the point co= | A |, and back 
above the real axis. The only branch points in the 
integral of (22) lie along the real axis and to the right 
of co= |A| . In general, there is no branch point at 
u— |A] , but it is convenient to always cross the real 
axis to the left of that point. Computing the difference 
of the integrand above and below the real axis, 
introducing 

€=(co 2 - |A | 2 ) 1 / 2 , (25) 

and explicitly introducing the cutoff at 

e=a;D</x (26) 

(so that (l±e//z)1 / 2 never vanishes), we get 

gmpoA* r«D de 
A* = -

2(2x)2/ 'Jo ( eH- |A |* ) w 
ln [ i , + ( / , e ) i , -y ,« ) ] , (27) 
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where 

J V = ( W = 
s inp( l±€/ /x) 1 / 2 -^] 

(28) 
sinp(ldb€//*)1/4+*i?ri 

and 77 —> 0 + . Now 

ln/,±(/,€) = - 2 i tan-^cot/Clzb€//i)1/2 tanhy]. (29) 

As /(l=be//i)1/2 increases through mr, the inverse tan
gent makes a jump of — ir, otherwise it is constant. 
Hence, we may write 

lni,±(Z,€) = 2iri i ; C K 1 ± € / M ) 1 / 2 - ^ T T ] , (30). 

where 
0(s) = l , «>0 

= 0, x<0. (31) 

The original branch that j^{l,e) starts on is deter
mined by the fact that (14) vanishes as d and d' ap
proach zero. This makes the summation in (30) begin 
with n=l. With this result, and using the usual notation 

N(0)V=gmp0/2T2 

we may rewrite (27) as 

(32) 

1 T r" 

(0)V~rJo 

de 
E -\e(l(l+-) -tnr 

N(0) V I'J o («2+1A |*)W »=i 2L V \ yj ) 

^('-J—)]' (33) 
This is the gap equation for a slab of thickness d=l/p<t.'

1'i 

To see what the solutions of this look like, let us first 
neglect terms of order WD/M compared to unity. Further, 
let us write /' in the form 

l'=l-\ir. 
Then (33) becomes 

1 7T «o f<"> 
E $Q-nr) / 

Jo 

de 

(34) 

-, (35) 
N(0)V / - X T — i ' 'J9 (e2+|A|2)1/2 ' 

which has the approximate solution (taking A real) 

A=2COJD e x p [ - / ( / ) / # (0)F], (36) 
where 

/ ( / )= Q-\V)/T E 0(1—mc). (37) 

The function /(/) increases linearly in / whenever l^mr. 
At l=nir, f(l) decreases discontinuously from (n—\)/ 
(n—1), for l=nw—, to (n—\)/n, for l=nw+. The be
havior of A(/) is sketched in Fig. 3 for values of X 

7* Note added in proof. The effect of finite temperatures is 
simply to introduce the usual factor, tanh[(^-r-|A|2)1/2/2J&:r], in 
the integral in (33). This modification, the same as in the infinite 
superconductor, then results in the usual relationship between the 
critical temperature and the zero-temperature energy gap, except 
just at the resonances. 

.2 

FIG. 3. Behavior g . 
of A as a function of g,,2"" 
thickness of slab for g 
various values of X X 
and for iV(0)F=0.3 ^ M 
andwD = 100°K. < 

equal to 0, 1, and 0.82, the last value being the one 
that gives agreement with the results of Blatt and 
Thompson.5 We must, of course, examine the small dis
tance behavior of A*(#) to see what value of A is reason
able. We will return to this point later. 

We note that the resonances all occur at l—mr (or 
po=nir/d, the usual condition for standing waves of 
wave number p0 in an infinite square well of width d).7h 

If we make explicit the dependence of po on d (see 
Appendix), we see that the resonances occur at 

d= [»(*+i) (n- l)7rF/3AG1/3~ ( » - i) (TV/3N)I!* , 

where N is the number of electrons and V the volume, 
and the approximation is valid for all but the smallest n. 

That the resonances occur at l=nir is a direct conse
quence of our choice of boundary conditions: the vanish
ing of the wave functions at the surface. One should 
like to see the effect of a change in the boundary condi
tions. The usual alternative to specular reflection, dif
fuse reflection, does not have immediate applicability 
here. That is, no matter how rough the surface, as this 
is a time-independent problem, it will be the eigenstates 
corresponding to the actual surface which will form the 
pairs.8 Hence, the surface can't serve to break up the 
coherence. We can, however, instead of invisioning the 
system to be in an infinite square well, treat it as a 
finite but deep square well, corresponding to the finite 
probability of escape with sufficiently large energy. If 
the depth of the well is Vo then the resonances occur, 
for sufficiently large Vo, at 

nr~l/\l—{ V ]«*+*/ ) . 
/ L d\mVj J \mVj 

That is, we have changed the effective size of the 
sample. We can simulate this kind of effect by every
where replacing / by l+aw, where a will depend on the 
detailed nature of the boundary conditions. The only 

7b Note added in proof. These discontinuities are related to the 
passing of a single-particle energy level through the Fermi energy„ 
much the same as in the de Haas-van Alphen effect. 

8 P. W. Anderson, J. Phys. Chem. Solids 11, 26 (1959). 
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change then is that / ( /) is replaced by f(l+cnr), which 
has the same behavior as / ( / ) except that the reso
nances are shifted to / = (n—a)ir. If Vo is large enough, 
then the distance between resonances remains ir. Since 
the boundary conditions may well vary throughout a 
realistic sample, we would not expect to see these reso
nances ; their positions would be averaged over. 

To see the effects of the terms of higher order in 
COD/M, which we dropped, we refer back to the gap 
equation (S3). The first 6 function begins to contribute 
as I increases when /(1+COD//Z)1/2=7MT, and contributes 
over the whole range of integration when l=mr. The 
second 6 function starts to contribute at l=mr but 
doesn't contribute over the entire range of integration 
until 1(1—COD//Z)1/2=^7T. Hence, the effect of these terms 
is to replace the sudden jump in / ( / ) at l—nir by a 
more gradual change spread out over the region 

WK 
-<l<-

mr 

(1+ W X >/M) 1 / 2 (1-COD/M)1 '2 
'(38) 

Thus the resonances have a width bl^mrui)/ix. When n 
becomes sufficiently large (n^fx/aiD), the resonances 
begin to overlap. Figure 4 shows the detailed behavior 
near the ^ = 4 resonance. 

Small Distance Behavior of A*(x) 

To estimate the value of X we must return to (12) 
and evaluate A* (x) for small x. By small, we mean 
x^l/pQ, and we will assume the slab is sufficiently 
thick that dy>l/p0. We write 

dk, 

J (2w)2 
(2T)> 

Now, 

A* (2m)2 

(6*-ft*2) 

1 

m r00 

= — / dH,F„J(x,xM). (39) 

-[sinbx cosbx— cotbd sin2ftaf) 
1 

[sinft*# cosb*x— cotb*d sin2ft*af] [. (40) 
ft* J 

Before attempting to evaluate (39) it will be convenient 
to break up (40) into various terms. First it will be 
useful to remove that part of (40) which corresponds to 
the semi-infinite superconductor (d—>co), and we shall 
further want to remove from that part the part corre
sponding to the infinite superconductor. That is, we 
shall first want to return to (10) and solve it for the 
case f(x) = l in all space. This solution is easily ob
tained by taking Fourier transforms with respect to x. 
If we denote this solution by a superscript oo, it is 

FIG. 4. Detailed 
behavior of A(/) near 
/=4TT for X=0.82 and 
# ( 0 ) 7 = 0 . 3 , plotted 
as a function of x, 
where 

/ = 4 T T ( H - ^ 2 > / 2 M ) . 

easily seen to be 

F^(x,x',h) 

&*(2w)Hrl 

L6 6* J 2(62-&*2) 

Now, noting that, since lm&>0 always, 

lim cotbd^l/i, 
<i-*oo 

and that 

sin£# cosbx— (1/i) sin2bx=%i[l—e2ibx2, 

we may rewrite (40) as 

F«J (%9%,kx) = F*H"f (%,X,kX) 

+F„n'i(x,xikl)+F«n"Hx,xA) 
where 

'(2m)Hrl 1 n 
-e?ibx-\—e~

2ib*x , 
2-b*2)Lb &* J 

(42) 

(43) 

A*(2ni)Hrl 1 
Fan'1(x,x,kJ= -e>**+-e-

2(b2-b*2) ' 
and 

A*(2w)2 

(b2-b*2) 

i r in . 
— cotbd— sin2bx 
bl U 

+-Acotb*d+ 
6*L 3 sin2&*# (46) 

When we insert F0}n
(X>i(x,x,ki) in the expression for 

A*(#), (5), the result will be of the same form as one 
ordinarily gets for the infinite superconductor. [The 
numerical value will, of course, be different because the 
A* in the right-hand side of (40) is the solution of (13). 
That is, the A* in the right-hand side of (40) will be 
A(/) rather than A(<*>) (see Fig. 3)] . However, if we 
define 

A*(/) 

A*(/)~ 
•N(0)vf 

Jo o (e 2+|A(0 | 2 ) 1 / 2 
«/(0, (47) 

then Fb)n
oci(x,x,ki) will just yield A*(/). Of course, as 

l-^cc, A*(/)—> A*(oo). To evaluate the contribution 
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of Fan'*(x9x,kx) we insert (45) in (39): 

1581 

F*n'K*> 
m r 

2 J dtiF»:K*,*M) 

i(2m)2A nyssr r 

•ien)2Tj -

db db* 
d^\—e2ibx+—e~2ib*x 

2(4m#€w)27r7-M " U& d£j. 

where we have made use of (16) and (17). Thus 

irnA* 1 

(48) 

(49) 

m r™ 

2wJ-p 

A*(2m)2 1 f /-Si-* r In 
j / db\ cotbd— sin2bx 

^mien 2w IJ £i== 

rh=*«> r In 1 
- / <»* cot&*<2+- sin26*x , (54) 

where we have used (16) and (17). Since the second 
integral in (54) is the complex conjugate of the first, 
we need only consider 

where £x is now set equal to —/x. 
To evaluate the contribution of (49) to A*(x) [which 

we shall call A'*(#)], we shall want to sum (49) over 
con, as in (5). Since we are here concerned only with 
zero temperature, the sum becomes an integration, as 
in (21), yielding 

A'*(*) = £ 
imA*(l) 1 i d03n 

STX 27r;_00(o)n
2+|A(/)|2)1/2 

/•Si-* r In 
/ = / db\ cotbd— $in2bx 

JSL—V L iJ 

1 n - 1 J ^ i = = _ M 

" {si 
A. 

dbe2ibdn sitfbx (55) 

1 oo 1 e2ioan r x xz -i 
- J 2 sin2&&+^— sinfoc cosfoc , 
dn=m\- x2/d2n2L dn d2n2J 

X[e2ibx-e-2ib*x2. (50) 
where £j. is to be evaluated at — n in the last line of (55). 

We are interested in this for the case x/d<Kl. Hence, 
A . « i- • • -XT provided \b\x<ir, that is poxKir, so that sin2bx doesn't 
Again, we must cut off the integration at cop. Now v a n i s h w e m a y w r i t e 

recall from (11) and (24), for £x= —ju, that ' 

6 = ^ O ( 1 + W M ) 1 / 2 , b^-pod-Un/p)1'*, (51) J « ( 1 / ( 0 sin25x E (lA*)e2iWn. (56) 

and, since en can be at most on the order of wj>, we may r™ ,. . ,Cs\ . ., , , , .„ ,. . 
' , , , 4 . - / C 1 W J / The summation m (56) is easily done by differentiating 

expand the square roots in (51) to order COD//X: - - - J J & 

(l±ien/txy>2~±l+ien/2tx. 

To this order, (50) becomes 

gtnA*Q) 
A'*(#)« sin2^0# 

with respect to d, summing the geometric series, and 
then integrating with the boundary condition that as 
d—»oo the summation vanishes. This yields 

4TT2# 

rUJ> da>n 

x/ 
-e-poxen/Hm ( 5 2 ) 

1/2 To evaluate o (o>n
2+\A(l)\2) 

Since we are interested in x^l/po, we may take 
^O^COD//*<<C1 and replace the exponential in (52) by 

unity. Then, using (47), we have 

A'*(x)~-A*(l)sm2pQx/2pQx, x<K(l/po)p/aD- (53) note that 

Finally, we must evaluate the contribution of 
Fu>n'

n(x,x,ki) to A*(a), which we shall call A"*(#). 

J ~ - (1/d) sitfbx l n [ l - e2idb2, x/d«l. 

Thus, 

^«» , ; f 0*0~(A*nti/2ir6nd) {sitfbx ln [ l - e2^6] 
- s i n 2 ^ l n [ l - e - 2 ^ * ] } . 

A"*(; »=w 
j 27T 

- * . ."* ( * ) , 

(57) 

(58) 

(59) 

we will use the technique used in evaluating (21). We 

sm2bx^sm2pox+0£poXo)D/2jx], 

«sin26*#. 

Thus, we shall need Then, letting con=ico, 

gnipoA* 

(2T)2U 

gmpoA* 

(2T)2U 

/

too 

-tOO 

<fco 
•In 

l - e x p { 2 « C l - ( w 2 - | A | 2 ) 1 / 2 / M ] 1 / 2 } 

•sin' 

(co2- | A12)1/2 1 1 - exp{ 2 * 0 + (w 2 - | A | 2)1 /2/A«]1 /2} 

/•*• <Zu f r s i n { / [ l - (co2- | A | 2 ) 1 / 2 /M3 1 / 2 }-1 
*o# / {In 

./_,•„ (co2-I Al2)1 '2! L 

(60) 

(61) 

s in{ i [ . l+V- IA | 2)1/2/M]1/2} J 

+ * J 0 - (co2- | A | * ) w / / i ] w - [ 1 + (co2- | A| 2 ) 1 / 2 /M] 1 / 2 ] } • (62) 
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Distorting the contour we get 

gtnpoA* 
A"* (x)= sin2£o# 

(2T)Hi 

which gives to order COD/V, 

A"*(x) = 2 s i n 2 ^ [ ( / y / ) A * ( Z ) - A*(/)]. (64) 

Hence, combining all our results according to (44), we 
have 

sin2/w a AW 1 1 
A*(*)«S*(0{ 1 + 1 2 s i n 2 ^ , 1 2p0x UX*(fl J J 

*/<Z«l, ^0x«M/coi)»l . (65) 

Thus, if we define \ir as twice (because there are two 
surfaces) the value of pox which gives A*(#)«A*(/) 
then (65) suggests that XTT < 2 (TT/2) or X < 1. 

The specific value of X chosen will determine (see 
Fig. 3) whether A* (/) lies predominantly above or below 
the value of the gap in the infinite superconductor, 
A*(oo). [The reasonable Blatt-Thompson5 value of X 
= 0.82 makes A* (/) predominantly greater than A* (oo).] 
We shall see later that the presence of a normal metal 
at the surface, rather than a vacuum, greatly alters the 
rate at which A*(x) rises. Since in practice supercon
ducting slabs are bounded by various materials (e.g., 
substrates for evaporated films, etc.), and surfaces may 
not be particularly clean, it would seem likely that any 
given sample would probably have a variety of X's 
associated with different parts of it and the net effect 
would be to average out values predominantly above 
and below A*(<»). Since the resonances themselves will 
also be washed out by varying thickness in the sample, 
it seems improbable that any value other than A*(oo) 
would actually be measured. 

Limit of Semi-Infinite Slab 

The limiting case of a semi-infinite slab may be ob
tained easily by taking the limit of (12) as d—»oo. In 
this limit po and LI assume the usual values for an in
finite medium. Since Im6>0 , Im6*<0, we have, in this 
case, 

F*J(x,xr,kx) 

A * ( 2 w ) 2 ( l 1 
: \ -eihx> sinbx< e~ih*x> sin&*#< 
(&-b*2)[b b* 

Hence, 

F<J (x,x,kx) = F^f (x,x,kx)+FUn'* (x,x,k0. 

(66) 

(67) 

We have already evaluated the A*(#) produced by 
(67) in the course of evaluating that produced by (44). 
Thus, we have, at zero temperature, the small distance 
behavior of the pair wave function 

A* (# )« A*[l - sm2pox/2p0xl > ^ O ^ « M / C O J D » 1 . (68) 

We should also like to evaluate A*(#) at large dis
tances from the surface, both at zero temperature and 
at the critical temperature. I t is clear from (45) that as 
% —>oo, FuJ^ixjXjki) —> 0. Hence, at large distances from 
the surface, the behavior is the same as in an infinite 
superconductor, and we can reasonably identify A* with 
A*(oo), the energy gap of the infinite superconductor. 
To see how A* (x) —> A* at large x, we consider first the 
zero temperature case, and return to (52). 

A'*(x) = A*(#)-A* 

gniA* 

4TT2X 
sin2*0# / en*o*«n//» 

Jo KM-lAl2)1'2 

W / * « l . (69) 

For large x, specifically x^>fx/o)Dpo, the major con
tribution to the integral in (69) comes from en<n/p0x 
<KO>D. That is, from o)n<^coD- As the exponential cuts 
the integrand off rapidly, we can let the upper limit go 
to oo, and thus obtain 

A*(*)-A* 

gniA* r00 den 

« sin2*0# / e-P*x*n!n 
4TT2* y,A| ( e ^ - l A l 2 ) 1 ' 2 

gmpo $m2p0x 
« A* 

2TT2 2p0x 

For still larger x, then 

: r iAii 
K0\ p0x , 

M 1 
# » . (70) 

COD pO 

gmpo smlpoX/ TT LI X( 7T M \ 1 / 2 

A*(#) — A * « — ——A*——-—( J e-^0XlA|/^, 
\2poX | A | / 27r2 2p0x \2poX 

(71) 

\A\po 

Thus, while the exponential dropoff of A*(#) —A* is 
only over the coherence distance 

£ O = ( 2 / 7 T ) ( M / | A | ) 1 / £ O , (72) 

the sin2^o# oscillates with a wavelength ir/po and will 
in any realistic sample, whose surfaces are surely not 
plane to this accuracy, cause A*{x)—A* tp average to 
zero. This sin2^0# behavior is not restricted to large 
distances but is valid, as we see from (69) [and more 
explicitly (68)], for all x, down to very small distances. 

Hence, we may say at zero temperature that A*(x) 
rises very rapidly from zero at the surface to the bulk 
value A* in a distance on the order of l/£o. Different 

file:///2poX
file:///2poX
file:///A/po
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boundary conditions may alter somewhat the value at 
the surface, but should not change the rapid rise to A*. 
We shall see however that the presence of normal metal, 
rather than vacuum, on the other side of the surface 
will alter this quite radically. 

To evaluate A*(V) — A* near the critical temperature, 
we return to (49) and sum over frequencies according 
to (4) and (5). We note that (49), depending on con 

only through en, is even in con. Hence, we need only 
consider o>n>0. Further, at T^TC, A*«0 and therefore 
en~co» for con>0. Then (49) involves terms like 
exp{2i^o[l+^n//i]1/2}. For large x, the major con
tribution arises from the smallest value of con, from 
coo= irkTc Hence, to obtain the large x behavior, we need 
only replace the summation in (5) by the leading term. 
(The contribution of the next term is about 5% for 
x=fx/irkTcpo.) Finally we note that kTc/fi^l, so that 
we may expand 

(l±^7r^rc//x)1/2« ±l+iwkTc/2v. (73) 

This gives us 

w=0 

or, to lowest order in A* and &rc//x, 

f gmpo sm2pQx } 
A*(#)~A*j 1 :erpozrkTclA 

[ 2TT2 p0x J (75) 

x>(iJi,/irkTc)l/pQ. 

Thus, near the critical temperature, we also see that, 
because of the rapidly oscillating sin2^0#, A*(x) effec
tively rises to A* in a very short distance. That the 
sm2p0x is correct even at small distances can be seen 
by referring to (49) and noting that we may generally 
write 

b*3p0(l+i€n/2iM), b*~p0(l-ien/2fx), (76) 

since only con<cox>«/x can reasonably be expected to 
contribute to the superconducting solution. 

III. SEMI-INFINITE NORMAL AND SUPER
CONDUCTING METALS IN CONTACT 

We want to see how the results of Sec. II are modified 
when the superconductor is in contact with a normal 
metal, rather than with the vacuum. We shall consider 
a semi-infinite superconductor touching a semi-infinite 
normal metal, with #=0 the plane of contact, the super
conductor being on the positive x side. Thus the two-
particle potential will be given by (1) where, according 
to (2), 

/(*) = *(*). (77) 

In order for the normal metal and the superconductor 
to be different metals, we shall assume that they are 
described by different effective masses and Fermi mo
menta. All quantities referring exclusively to the nor
mal metal will be signified by a bar above them: m, 
po= (2mji)112 where fi^fi—U and U is an extra param
eter (a potential) introduced to further distinguish the 
two metals. Thus, for example, 

| i = ^ 2 / 2 m - / 2 , a = [ 2 m ( - | i + ^ n ) ] ^ 2 . (78) 

Superconducting quantities will be unbarred: m, 
£o=(2mM)1/2. 

The Gor'kov equations for this system are then, 
after Fourier transforming them according to (7), 

\e(x)—(a2+—)+d(-x)—(a2+—X\GUn(x,x',kl) 
L 2m\ dx2/ 2m\ dx2/A 

+d(x)AF0)J(x,x',kl) = 5(x-xf), 
(79) 

\e(x)—(**+—W-*)—(W—)~\F„X*,*M 
L 2m\ dx2/ 2m\ dx2/A 

We now consider the boundary conditions at x=0 fol
lowing a discussion of Harrison.9 We must insist that 
any current be continuous so that there be no accumula
tion of charge at the interface. Since the current is 
proportional to the velocity, it involves the effective 
mass which changes discontinuously at the boundary. 
Hence the wave function and/or its derivative must also 
change discontinuously. This is not unreasonable, as 
the effective mass approximation means we are replac
ing Bloch waves by plane waves. The Bloch waves, of 
course, must be continuous, but the plane waves 
needn't be. Thus, if we consider the wave function in 
the effective mass approximation, *A(x), as a function 
of x, we may take as the discontinuous boundary 
conditions 

# #(0+) 
iKo-)=qKo+), —(o-)=P . (80) 

dx dx 
If we take a and p real, then current continuity requires 

pa = m/m. (81) 

The boundary conditions for (79) are then (expressed 
in a form which will be useful later)9a 

• W. A. Harrison, Phys. Rev. 123, 85 (1961). 
9a Note added in proof. P. G. de Gennes (to be published) has, 

for the case of dirty metals, chosen essentially the same boundary 
conditions: current continuity and discontinuity of FK He 
chooses a particular value of the discontinuity, derived for the 
special case of the critical temperature, and only valid there. 

« 2 ? & 7 y W t ( * ) , (74) -e(x)A*Gan(x,x')kl) = 0. 
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1 1 The left-hand side of (87) is the limit of a function 
~~^«»(0+,#',&i)---—GWn(0--,tf ,&i) which is analytic in the upper half of the K plane. The 

right-hand side is the limit of a function which is 
=7iA+(x,)=-A-.(xf), analytic in the lower half plane. Hence we may set 

a (87) equal to P'(K,x'), an entire function of K. Simi-
, .„ larly we set (88) equal to Q'(K,x'), another entire 

*!2(QJL x' k ) ~(0— xr k ) function. Considering only the case x'>0, the right-
2m dx ' ' l 2m dx ' ' * h a n d s i d e of (87) g i v e s 

p G-(K,x')= 
(82) (K-a)(K+a) 

—/V(0+,*',*i) ZV(0-,*',*0 X C P ^ i f ^ O - r ^ + M + ^ ^ + M ] . (89) 
2m 2m 

i) By our convention, — a lies in the lower half plane. But 
= r)C+(x') = -C-(xf), G-(K,x') must be analytic in the lower half plane. 

a Hence we must have 

Pf{K,xf)-^B+{x,)+iK71A+{x,)= {K+a)P(Kyx'), (90) 

where P(K,x') is an entire function of K. Then 

G-(K,x') = 2mP(K,xt)/{K- a). (91) 

, p Similarly, from (88), 

1 

2m 

dFaa 

dx 

t 
-(o+, x',h)-

1 

2m 

dFUf 

dx 

t 
- ( 0 - ,x',h) 

x r 
P 

-(*'), 

f = l / i _ ^ W = _ L / 1 _ 1 > \ (83) F_(JRT,x') = 2m(2(i:,x')/(ii:+a*), 
2 « \ J 2m\ o)' where 

(92) 

and e ' ( ^ ' ) - f ^ + ( ^ ) + ^ C + ( a ; ' ) = ( i S : - a * ) Q ( ^ ' ) . (93) 

4±(* ,) = G(,„(0±>*'>*i), 5±(x') = —-(Qd=,«'>*i), U s i n g (9°) and (93), the remaining halves of (87) and 
dx (88) may be written 

(84) 
iP . . t F+(K,x') 

C±(«0 = i?..KO±,«',*j), 27±(«0=——(0±,«',*i). 

(ii —a )(A+a*) 
Solution for ft and G +£D+ (*') -iKrfi+ (x')~], (94) 

G+(25>') 
It is convenient to define 

2m 
p3z°° __ 

G±(K,x')=± dxeiK*G„n(x,x',k,), (85) (£-<>)(*+<*)' 
./o 

[AF+CS:,*') - eiX*' - (#+ a)p{KX) 

o -fB+(«')+«X ,i,4+(«')]. (95) 

.aOsi/" <te^w„t(*,*'A)- (86) G J ^ For large K we may, from the definition (85), expand 
as 

complex variable K F+ G(R , ) = f* dxeiK*G(an(XjX>jkl) 
per half plane, F_ and GL v ' } y • nV ' ' y 

Considered as functions of a 
and G+ are analytic in the upper ] 
in the lower half plane. If we now multiply (79) by 1 1 
eiKx and integrate with respect to x from -—00 to oo, «—A-(x')-\ B-(x')-\ , (96) 
we get, using the boundary conditions (82), *•*• & 

(l/2m)(a2-K2)G+(Kix
,)+AF+(K,xf)-e(x,)eiKx, w h e r e use has been made of the definitions (84) and 

- - (l/2m) (d2--K2)G-(K,x')+d(--x')eiKx' t h e b o u n d a r y conditions that, for finite x', 

+tB+tf)-iKnA+&), (87) limGWw(*,«/,ti)= lim(dG„Jdx)(x,x'M=0. (97) 
a;->oo x->oo 

(l/2m)(a*>-K*)F+(K,x')-A*G+(K,x') . 
=-d/2fft)(ff«-jp)F_(jry)+rz>+(*') 0 n t h e o t h e r h a n d ' ( 9 1 ) g l v e s 

-iKr,C+(x'). (88) G-(K,x')~2mP(K,x')il/K+a/Ki+---2. (98) 
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Thus, comparing (98) with (96), we see that P(K,xf) where we have used (11), (81), and (83). The condition 
must approach a constant with respect to K in the that F+(K,x') be analytic in the upper half plane re-
limit of large K in the lower half plane. Similarly by quires that the expression in the square brackets in 
examining G+(K,x') from (85) and (95) we find that, (101) must vanish at K=b and K=—b*. These two 
in the limit of large K in the upper half plane, P(K,x') conditions enable us to solve for P{xr) and Q(x'). If 
must also approach a constant with respect to. K. The we define 
only entire function with these properties is a constant. 
Hence, comparing (96) and (98) we then get D(b,b*)^ (b2-a2)(pb*-aa)(pb-aa*) 

! a -(b**-a*)(pb+<ra)(pb*+ad*), (102) 
P(K,x') = P(x')= i4-(*0= 4+(*0 then 

2mi 2mi 
(99) 2mA* 

1 p Q(*0 = Z(pb*-aa)eib*'+(pb+vd)e-ib**f'], (103) 
=—£-(* ' )=—*+(*' ) • °(!>>b*) 

2ma 2ma 
1 

Similarly the asymptotic evaluation of F„(K,x') yields JP(*') = [(&*2-a2)(p&*+cra*y6*' 

2 w w 2m* noo) Insertion of (103) and (104) in (101) gives F+(K,x') 
_ i _ p

 l • for x'>0. Likewise use of (103) and (100) in (92) gives 
= £>_«) = D+(x'). F-(K,x') for xf>0. To get F„J(x,xr,ki), we note from 

2?M* 2ra<z* (86) that 

Inserting (95), (99), and (100) in (94) gives d(±x)FaJ(x,x',k,)= / —e-iKxF±(K,x'). (105) 
F+(K,x') J-X,2T 

(2m)2 The integrations in (105) are straightforward contour 
= fW-h2\fjn-h*2'[A*eiKX'+A*(-pK+'T^F(-Xn> integrations and FJix,^,^ is easily obtained. 

{K b)(K b ) I n a s im i i a r manner, (87) and (88) may be solved 
- (l/2»)(K*-a?){pK-cra*)Q(x')'], (101) for *' <0. The final result is 

FUnKx,x',h) = e(x)e(x')Fa^(x,x',ks) 

4mHA* ( 
+e(x)6(x') p<r(a+a*)nb2-a?)eib*<rii*x'+ (b*2-a?)<rib*xeibx'l 

Z?(J,&*)(8»-J**)l 
D(-b, b*) D(b, -b*) 

2b 2b* 
4mmiA* 

+0 (x)d(-x') r(pb*+<ra*)eib*e-iSx'+ (Pb-aa*)e-ib*xe-iSx'l 
D(b,b*) 

AtnmiA* 
+d(-x)d(x') [(pb*-ad)em*xeib*'+(pb+aa)ea*xe-ib*x'l 

WW . ,. * 
QrnHA* 

+6{-x)6(-xf) (b+b^e™***-™*', (106) 
D(b,b*) 

where FUn^(x,x',kx) is given by (41). A*(x) at J « Te 

Since a and b both have positive imaginary parts, we 
see as x and *' become infinite with x-x' remaining f% n o f w a n t * s e e h ™ the pair wave function, 
finite, that all terms except the first in (106) approach calculated according to (5), approaches its limiting 
zero. This gives the very reasonable result that as we valuf* o f ° *>r x -*T " ^ ^ for * -> + co. We 
get sufficiently far from the normal-superconducting consider x>0 first. Then defining 
boundary the behavior is either that of a normal 
metal (x, x'<0, J F * - » 0 )

 o r a superconductor (x, x'>0, F^{x9x9k^ = F^{x9xM+Fn^{x9x9hd (107) 
F1"—* JF00"1"). Since this is, indeed, a desired result, we 
must choose A* to be the energy gap in the infinite and 
superconductor. A*(*) = A*+A'*(*), (108) 
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•a 
o 

FIG. 5. Behavior 

as complex functions 
of £L. Points 1,2, and 
3 correspond to £L 
= — n. 

real axis 

we have 

where 
d(x)A'*(x) = gkTd(x) E n F^(x), (109) 

J (2x)2 

rJ-n 

m 

2irJ 
(110) 

Since the integration in (110) is rather difficult, 
and since the approximation here should only be good 

at large distances from the surface where A*— A*(#) is 
small, we shall only attempt to evaluate A'*(#) for 
for large %. From (106) we see that the large x behavior 
is determined by three types of exponentials whose 
exponents are i(b— &*)#, 2ibx, and —2ib*x. As £i—»<*> 
we see from (11) that b—b*,b, and — J* all approach 
ico. The behavior of these three functions of £x is 
plotted in Fig. 5. The large x behavior comes from the 
points where the imaginary part of these functions is 
smallest, that is, from the points 1, 2, and 3 indicated 
in Fig. 5. These all correspond to &.= --/*• We may 
therefore evaluate the coefficients of the exponentials 
at the point 5x= —M to get the dominant large x be
havior. Noting that 

- 1 » * d 
e%(b-b*)x = ei(b-b*)x (HI) 

and 
imxb*—b d%L 

- l b d 

imx 2 d%L 
~e2lbx, e t c . , (112) 

we get for large x 

F*.'K*)~ 
2m2A*r p<r(a*2-a2)(a+o*)&6* 

•KX lD(b,b*)(b2-b*2)(b*-b) 
.eHb-V)x 

D{-b, b*) 

4(6*-J*») D(b,b*) 
.g2ibx_ 

1 D(b, -b*) 

4(62-6*2) Z?(J,J*) 
lit** 

J' 
(113) 

where it is understood that everything is to be evalu
ated at £i= — fx. 

To obtain the large x behavior at T~TC we use the 
same technique used in (74); we simply take the leading 
terms in the summation (109). In the approximation 

this gives 

0(x)A'*(x)* 

kTc/fi«l, 

gmpo 

kTo/ixa.: (114) 

-e(x) 
I27T2 

XA* 4 / ( l + ) + sm2pQx 
[TrkTcL p po> \ p pj J p+a 

X e-po**Mcfit9 ( H 5 ) 
pox 

The last term in the braces in (115), which arises from 
the last two terms in the brackets in (113), is an oscil
lating term with frequency 2p0. When averaged over 
any realistic surface this will go to zero, and we may 
ignore it. Thus, for large a;, we get approximately 

d(x)A*(x) 

= d(x)A*\ 1 -
o M i , n 

Tu—e-™
x*hTc,>1 , (116) 

2TT2 irkTc pox 

where the only effects of the discontinuities at the 
boundary occur in TM, the transmission coefficient10 

evaluated at energy E=JJ,: 

TE^\ 
transmitted current!2 

incident current I 

U\ 

(117) 

-,1/2 -|l/2 i 2 

We notice that if the transmission coefficient vanishes 
\JT—>0 and/or p—><*> ; we cannot have U=y. because 
of (114)] then (115) simply gives back the result (75). 
In general, the ease with which particles may be trans
mitted across the boundary only effects the magnitude 
of the second term in (116). The range of that term, the 
distance from the surface at which A*(x) becomes 
essentially equal to A*, is uneffected by the details of 
the transmission and is always given by n/nkTcpo, 
which is approximately the coherence distance. 

For x<0, one gets by a similar procedure 

gmpo pi 1 
0(-#)A*(#) = 0 ( -# )A* TM 

27r2 wkTc po\%\ 

Xexp(-po\x\TrkTc/ji). (118) 
10 For example, Eugen Merzbacher, Quantum Mechanics (John 

Wiley & Sons, Inc., New York, 1961), p. 90. 
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Thus* at the critical temperature, the deviation of 
A* (x) from its limiting values is quite symmetrical for 
positively and negatively large x. The only difference 
is that the parameters of the appropriate metal enter. 
Correlated pairs are to be found in the normal metal 
up to a distance of about p,/irkTcp0. 

A*(x) at r=0forjc>0 

To evaluate A*(x) at T=0, we must insert (113) in 
(109). The summation in (109) becomes an integration 
at T=0 as in (21) and (50). Thus, 

0(*)A'*(: x)^(x)[ do>nF„^{x). (119) 

As in the T^TC case, the last two terms in (113) give 
an oscillating term with frequency 2po, which will 
average to zero in a realistic sample, so we will neglect 
these terms. The remaining term has the exponential 

exp[i(b—b*)x2 
= exp{-^[4w[(/x2+|A|2+o;n

2)1/2-/x]]1/2}. (120) 

For large x, the dominant behavior is from the neigh
borhood of con=0. We may therefore expand everything 
about this point to get, after some algebra and taking 
A<Q* and A<$CM, 

d(x)A'*(x)~-d(x)A 
gmpo \x 

2TT2 2 | A | 3 1 + £ M 

• / : 
where 

X—e-pos|A|/M J ^ l ^ n l e - ^ W ^ l , (121) 
po% 

£M=1- (122) 

is the reflection coefficient10 evaluated at energy /*. 
Performing the integration, and introducing the co
herence distance £o denned by (72), we get, at T=0, 

S(x)A*(x) 

= 0(#)A* 1 -
gmpo TT2 TV 

2TT2 4 1+Rt \x/ \ T £</J 
(123) 

The appearance of the reflection coefficient in the de
nominator indicates the nonlinearity of the problem, 
which didn't appear at T^TC because that calculation 
was performed only to first order in A*. The greater 
the reflection, the smaller will be the second term in 
(123), and hence the closer to A* will be A*(x). This can 
be thought of as an indication of the Bose properties 
of the correlated pairs; the more pairs present (by 
reflection), the more likely it is to find additional pairs. 

Again, as at T^TC, the range of the second term 
in (123) is essentially £0. (From T~TC to T=0 the 
range has changed by less than a factor of 2, being 

longer at T=0.) Thus, at a distance of about the co
herence distance from the normal metal, the super
conductor behaves like an infinite superconductor. The 
presence of the normal metal is felt at smaller distances. 

A*(*) at r=0 for JC<0 

Finally we want to consider the zero temperature 
pair wave function in the normal metal. We shall treat 
this in a more general way in order to demonstrate 
that the qualitative result doesn't depend on the ap
proximation (6), or indeed even on the approximation 
leading to the Gor'kov equations, but only on the 
feature of the two particle potential given by (77). 
Thus, with this potential, we have as an exact equation 
(suppressing all bars on quantities), 

2m\ 
a*2+— V»»K*,*',K>==0, x<0. (124) 

2m\ dx2/ 

The solution of this which goes to zero as x • oo i s 

(125) 

From the definition4 of F(CJ(x,xf,ki), one can easily 
show [recalling that JF^1" (#,#', &i) already has its anti-
symmetrical spin properties removed] that 

FJix'^k^F-vJiw'A). (126) 

Hence, it follows that 

Fj&x^k^f^kje^e-"*', x,x'<0 (127) 

where 
/•„(*i) = / - „ ( W . (128) 

Then, from (5) evaluated at T= 0, we have 

6(-x)A*(x) 

gm r™ r°° 
= » ( - * ) — / d"n d^UihW-**^. (129) 

We have here recognized that symmetry with respect 
to reflections of y or z implies that fUn(kx) must, in fact, 
be a function only of ki2 and hence of &. Using (9) and 
(128), we may rewrite (129) as 

6(-x)A*(x) = d(-x) 
gm 

'27T2 , 
• I dcon I < 
7 0 J~n 

# i / . . ( * i ) 

Xexp{- |*| [4<fe 2 +^) 1 / 2 +£i] ] 1 / 2 } . (130) 

For large |# | , the dominant contributions to (130) 
come from £i<0 and from the neighborhood of con=0. 
Hence, we may write approximately 

gm r° n 
0(-*)A*(*)«0(-aO—/ d^foikx) doin 

27TV-n Jo 

Xexp{-|*|[4^Cax2+con2)1/2+^]]1/2}. rt31) 
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The o)n integral is easily evaluated for large \x\ and 
negative £i to give 

1 g /m\112 r° 
« * ( - * ) — — ( - ) / dfeM*x)(-*i)1 / 2 . (132) 

| s | 2iA2/ J-» 

Hence, independent of the detailed form of /«n(&i) 
(which will depend on the boundary conditions at x=0 
and the solutions for x>0), providing fo(kx) is not 
actually zero (as would be the case for a vacuum to the 
left of x=0), we see that A* (x) does not die off ex
ponentially as we move into the normal metal, but 
rather only slowly dies off as 1/ |# | . For the special 
case of our approximation, taking unit transmission co
efficient, we get for x —> — oo 

So gntpoT 
d(-x)A*(x)~d(-x)A* . (133) 

| s | 2TT2 6 

The reason for this failure of the pair wave function 
to die off is that there is simply no mechanism for dis
rupting any correlation that drifts across the boundary. 
The only length in the problem is 1/po which is just 
too small. On the superconducting side there is the 
longer length /*/1A | po, and at finite temperatures there 
is n/kTpo, but as long as there is no interaction between 
particles in the normal metal, the only energy is n and 
hence the only length is l/^o. If there were some energy 
of interaction in the normal metal, then another 
length could be constructed, namely, /, the mean free 
path, but in this model which assumes no such inter
action there is no way to prevent the pairs from drifting 
arbitrarily far into the normal metal. 

By replacing A*(x) in the Gor'kov equations by a 
model Am*(x) which we take to be constant in the super
conductor, we have been able to solve the equations and 
calculate an improved A*(#). No attempt has been 
made here to estimate the errors involved in this pro
cedure, although such a program is now underway. 
Presumably this approach is valid in the case of the 
finite and semi-infinite superconducting slab where 
A*(#) rises rapidly from its zero value at the surface 
to the interior value of A*. The agreement obtained 
with the work of Blatt and Thompson5 reinforces this 
conjecture. In the case of the normal-superconducting 
boundary, our results are probably valid at large dis
tances from the boundary [the asymptotic region in 
which we explicitly evaluated A*(#)] where A*(x) is 
close to A*, although this should be verified. Since in 
essence we are perturbing in N(0)V, (32), about the 
infinite superconducting solution, we might expect that 
our results would be best for small N(0)V. 

The results for the superconducting slab show the 
Fabry-Perot resonances in the energy gap as a function 

at slab thickness. The behavior of A* as a function of 
slab thickness reproduces the result of Blatt and Thomp
son, and we can see to a certain extent the role of the 
boundary conditions. The pair wave function here 
rises rapidly to A* in a distance on the order of l/por 

as opposed to the case of the normal-superconducting 
boundary, where the rise takes place in a distance on 
the order of the coherence distance. These results are 
at variance with the somewhat perplexing results of 
Parmenter,11 presumably because the Gor'kov theory, 
which we have used, involves pairing of eigenstates of 
the problem, in keeping with the view of Ref. 8. Our 
rise distances are essentially temperature-independent. 
In the normal metal, on the other hand, the distance 
to which A*(x) extends depends on the temperature, 
ranging from about the coherence distance near the 
critical temperature to something quite larger at lower 
temperatures, presumably fi/kTpo or the mean free 
path, whichever is shorter. The effect of discontinuities 
at the boundary is simply to reduce the deviation of 
A*(x) from A* (or 0) in the superconductor (or normal 
metal) by a factor of the transmission coefficient near 
the critical temperature and a further factor depending 
on the reflection coefficient at zero temperature where 
the nonlinearities of the theory are more important. 
These discontinuities do not effect the rise or fall-off 
distances. 
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Dependence of p0 on Width of Finite Slab 

For a given number density of electrons N/V the 
chemical potential /z, and hence po, defined by (24), 
will vary with the thickness of the slab. To see how this 
goes, we calculate the density according to the relation, 
valid at zero temperature, 

p(r) = l i m ( — - ) / " d w I m G - ^ f r r ' ) , (Al) 

where the factor of 2 is for spin, and 

ImG_,-«(r,r')-

1 
= lim —[G-iwV)(t,i')--G--itu~ii)(t9t

,)l. (A2) 
*-KH- 2i 

We shall take the limit r' —» r by first equating the y 
and z components, and then letting xf —> x. Thus we 

11 R. H. Parmenter, Phys. Rev. 118, 1173 (1960). 
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shall need Using these relationships and (A6), we can write 
for co < — J A | 

G„n(x,x') 
lmG-ia(x,x') 

/

dki m r00 

G„n(*,*',*j.) = — / dkG»n(x,tf,k$. (A3) l w [ / co\ /• 
(2TT)2 2TT7_M = _ ( 1 + _ W *>,/„(*>,*<) 

2i27rl V eA/ c + 

Using the Green's function given by (12), as well as 
(17), (16), and the relations + » [ « + 0*»+1A|») i*]^ l_" ) /" dyfy{X>,X<) 

a«-i*=-2*m(«.+ 0 , ( M )
 6 °~ ( M 1 ) 

a*2— &*2= — 2im(o)n—en), 
w e g e t where C ± are contours ranging from —i<x> to +i<*> and 

crossing the real axis at [2m(fxdze)2m- Having obtained 
Gan(x,x') ImG_*w (#,#') we can now let %' —> x without the di

vergence difficulties we should have met had we taken 
m\( W A r°° $mb(d— x>) sinbx< this limit earlier. 

= 9~ I \ / / ^~M Since we are only interested in N/V, rather than the 
2TT I \ 6n/ J [2m(M+un)l

1/2 s m M density as a function of a, we may average over x: 

sin&*(d—#>) sin&*#<) 
(A12) 

/ w„\ /-<M
 #sin&*(d-x>)sin&*x<| ^ j „ 

(A5) 
Letting W e may perform the # integration at once, the integral 

smy(d—x>) sin^x< being the same as encountered in (14). This gives 
fv (*>>*<) = = ~ f-y (%>,%<) > (A 6) 

s i n ^ ImG_,w 

and noting that if con —> — £o, then en —> i[a;2— | A12]1/2 i ~d 
^ie, we get = - / dx lim ImG_t-« (#,#') 

dJo *'^x 

m f / o)\ r1™ 
G^(a?>*') = — ( 1 ) / dyfv(x>9x<) 1 m < / <a\ r r 1 "l (A13) 

2TTI \ e/J [tonir-*)]1** = —( 1 + - ) / #y cotyrf 
2f4irl V 6/7c + L ^ J 

+ \ + l / i [ 2 W ( , + o ] ^ ^ A ( X > ^ < ) ) ( A ? ) + C c o + ( M 2 + | A | 2 ) ^ l ~ ^ f rfy[~cotyj]J. 

For w <0, when w —» w±ii), we have Then, using 
N 2 r° 

e - ^ ( | A|2-a!2)1/2 0 > w > - | A | —= / da}ImG-{„, (A14) 

- T e + t f co<- |A| . ( M ) V *J-°> 

XT . /\h\A J - T v i i 4.u u and letting ^=r2w(Md=e)l1/2 be the variable of integra-
Hence, since (A7) depends on co implicitly only through . • ^ . . 7 i ^ iL ^, .̂ , 

• A ,i f tion in the integrals along the paths C±, respectively, 
e, we see at once that A

 to & r =t> i- ^ > 
' we get 

ImG_a*,*') = 0 0 > c o > - | A | . (A9) R . (*»/2fn-M) 
—= / M U I 

For co < - | A | we have V (27r)2. 

r00 f (k2/2m-/x) I 
/ fett 1 

•Jo I C(^/2m-/i)2+|A|2]1/2J 

C2»o.+.)J--+ C2W(,Te)]- x r r£_cot i ^ ( M 5 ) 

7cfc Lyrf J 

[(^w-^+lAl2]1' 

1 

G*±<0 
[2w( /z - e)]1/2 ~> [ 2 W ( M ± € ) ] 1 / 2 . (A10) 

l/Arfcej where C& runs from —too to +foo, crossing the real 
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axis at k. Now obtain the result for a normal metal simply by letting 
A —» 0, yielding 

P0 

kdkn(k), (A18) 

r r 1 -| — Zwt 
/ dy\ cotyd = n{k), (A16) # 1 A 

Jc* Lyd J d — = — / 
V wdJo 

where w(&) is the largest integer contained in kd/w. 
H e n c e where p0 is denned by (24). 

To show that (A17) and (A18) are essentially the 
N l /•«> same, we must invoke the cutoff at COD. This insures 
—= / kdk that A is zero whenever e^(k2/2m)—fx is greater in 
V 2irdJ o magnitude than COD. The only difference between (A18) 

(h^/i — \ anc^ (Al?)> then, is that the latter involves the integral 

x ( i !L_^ L(£). (A17) 
1 [(*/2m-M)M-|A|^H In=z2j denlL2m(»+em (A19) 

As d —•<», we have n{k) —> W/V, and (A17) gives the 
standard form for an infinite superconductor. We can while the former involves 

.= /" de l l - - *—-— l»pf»0.+ «)]w] 

" c f € I 

(A20) 
/•WD 

f 
Jo 

COD 

+ J del 1 — {w[[2w(M+e)]1 / 2]-w[[2w(M-|d)]1 / 2]} 

7_wn 1 r«2+lAl2r2J ' ' " 

' [e2+|A|2]1/2J 

where in the last line we have used the antisymmetry of e/[e2+1 A|2]1 / 2 and the symmetry of n[[2m(jx— | e|)]1 /2], 
under e —» — «. 

Thus we see that 7, and / „ , and hence (A17) and (A18), are the same everywhere except within the regions 
where the greatest integers contained in [2m(ix±coD)21,2d//"' are different; that is, in the narrow regions about the 
resonances. Even there (A17) and (A18) differ only by something on the order of COD/JU. If we ignore these small 
differences, we may evaluate N/V from (A18) as 

N T l/pod' /PodV 
{—J »(ft)-info>)[»(A>)+iI>(A>)+l] (A21) 

or 
po2 ird tN 7T ) 

M = ~ - = — — - + — n ( # o ) [ » ( ^ o ) + * ] [ » ( # o ) + l ] , (A22) 
2m mn(po) [V 6dd J 

in agreement with Thompson and Blatt.7 

The resonances occur at /=W7r, or 

d=mc/po= ln(n+l) (n- 1)TV/3N11(*. (A23) 


